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Abstract: The importance of accurate, real-time intelligence in modern warfare is crucial, especially 

in reconnaissance and surveillance operations. Currently, drones are widely used for reconnaissance, 

but generally rely only on the operator's ability to monitor operation targets. This research is aimed 

at developing an AI vision assistance system to enhance the ability to detect military vehicles and 

infantry. The method used is computer vision trained to recognize and differentiate several military 

objects. The YOLO model is used to detect and distinguish objects. To improve detection capabilities, 

the YOLO v8 model was retrained with an additional dataset sourced from battle recordings on the 

battlefield. The results show a detection accuracy rate of 95% in detecting vehicles and infantry 

under nor- mal visual conditions. The model from this research can be used to enhance the 

capabilities of reconnaissance drones and the effectiveness of monitoring operations. 
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1. Introduction 

The utilization of unmanned aerial vehicles (UAVs) namely commercial off the shelf style 

quadcopters in military operations has become increasingly prevalent due to their ability to provide 

real-time intelligence in combat situations. Traditionally, the effectiveness of these reconnaissance 

efforts has relied heavily on manual interpretation of aerial imagery. However, the integration of 

artificial intelligence (AI), particularly advanced object detection systems, has the potential to 

revolutionize this aspect of modern warfare. AI- driven systems can automate and enhance the 

detection and monitoring of military assets, providing crucial data more swiftly and accurately. 

Despite the advances in UAV technology and AI, there re- mains a significant challenge in 

automating the detection process under diverse operational conditions. Many existing AI models 

struggle with issues such as occlusion, variable lighting, and rapid scene changes, which are common 

in military environments. 

 This study aims to address these challenges by developing and evaluating an AI-assisted vision 

system, employing the latest iteration of the You Only Look Once (YOLO) frame- work, YOLOv8. 

This model is designed to improve the accuracy and speed of detecting military vehicles and infantry 

in drone-captured images, enhancing the operational efficiency of military surveillance. 

The research focuses on the application of the YOLOv8 model to drone footage obtained from 

typical reconnaissance missions, with the goal of detecting various military assets under different 
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visual conditions. The study tests the model's effectiveness in accurately identifying targets in 

scenarios that simulate real-world operational environments. 

2. Materials and Methods  

2.1 Overview of Deep Learning in Computer Vision 

Deep learning tackles complex mappings by breaking them down into a series of more 

straightforward mappings, each represented by a different layer within the model. From the layers, 

a series of hidden information can then be extracted. A pre-trained model is required to determine 

which hidden information helps describe the relationship of the data [1]. The role of what each layer 

does is stored in the “weights”, which are just a set of numerical values that the algorithm uses to 

accurately map the input data to their corresponding targets [2] 

2.2 Evolution of the YOLO 

You Only Look Once (YOLO) is one of the many approaches available for object detection in 

computer vision. This section provides a comprehensive overview of YOLO, from its historical 

development, underlying mechanism, se- lection and rationale, and comparative performance 

overview throughout its versions. 

The YOLO (You Only Look Once) series has significantly evolved since its inception in 2015, 

introducing pivotal advancements in real-time object detection technology. 

 YOLOv1 laid the foundation with its integrated approach to bounding box and class prediction, 

although it was limited by low recall and higher localization errors. Subsequent versions improved 

upon this, with YOLOv2 introducing batch normalization and anchor boxes, and YOLOv3 enhancing 

detection across multiple scales with the Darknet-53 architecture. A major shift occurred with 

YOLOv4 and beyond, incorporating advanced techniques like CSPDarknet-53 backbone, Mish 

activation, and the innovative "bag of freebies" optimization strategy. The latest iterations, YOLOv5 

through YOLOv7, transitioned to the PyTorch framework and introduced features such as scalable 

model sizes, anchor-free detection, and enhanced training efficiency aimed particularly at industrial 

applications, showcasing significant gains in ac- curacy and processing speed. [3] 

Ultralytics YOLOv8, the latest iteration in the YOLO se- ries, represents a substantial evolution 

in object detection technologies developed by Ultralytics. Building on the foundations set by 

YOLOv5, YOLOv8 enhances performance and flexibility for a wide range of computer vision tasks 

including object detection, tracking, segmentation, and image classification. Key integrations with AI 

platforms like Roboflow enhance its capabilities in dataset training, labeling, visualization, and 

management, facilitating a more efficient workflow in various applications [4]. 

2.3 You Only Look Once (YOLO) version 8 

YOLOv8 introduces significant architectural enhancements, particularly in its backbone and 

network modules. The model utilizes the C2f module (cross-stage partial bottleneck with two 

convolutions) to more effectively integrate and pro- cess high-level features, enhancing accuracy by 

leveraging contextual information from the background. Additionally, the Spatial Pyramid Pooling 

Fast (SPPF) feature in the 'Neck' section allows YOLOv8 to handle inputs of varying sizes by pooling 

features into a fixed-size output, thus accommodating diverse input dimensions without loss in 

performance. [4] 

 

The structure of YOLOv8 is further optimized by decoupling its 'head' into three primary tasks: 

objectness determination, classification, and precise bounding box regression. This separation allows 

each component to specialize, enhancing the overall accuracy and efficiency of the model. The 
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transition from anchor-based to anchor-free detection marks a significant shift, offering 

improvements in speed and accuracy. Advanced loss functions like CloU improve the alignment of 

predicted boxes with actual ground truth, solidifying YOLOv8’s utility in real-time applications and 

setting new benchmarks for performance in the YOLO series. [4] 

2.4 Label What You See Technique 

Label what you see technique is a method where a person manually labels visible objects. In this 

paper, the researchers label visible tomatoes, both ripe and unripe using the graphical image 

annotation tool “labelImg”. Emphasizing only the visible parts of the tomatoes especially those that 

are heavily obscured, bounding boxes are drawn based on their visible shape and estimated size. This 

approach is vital for training models to recognize partially visible tomatoes, a common occurrence in 

agricultural settings. To enhance accuracy and re- liability by ensuring there are no missed 

annotations. 

2.5 Data Gathering 

The initial stage involves collecting relevant video footage that serves as the raw data for the 

project. This footage is sourced from publicly accessible datasets and online plat- forms such as 

Telegram channels, Reddit subreddits like r/CombatFootageUkraine and r/UkraineWarVideoReport, 

and various news outlets. Criteria for video selection include having an isometric or top-down 

perspective and originating from contemporary conflict zones like the Russian invasion of Ukraine. 

Videos are assumed to be filmed using commercially available drones. These videos are then 

meticulously screened to ensure a diverse representation of military vehicles and infantry across 

different environmental settings. Each selected video is downloaded in .MP4 format, ensuring a 

broad spectrum of conditions such as variations in illumination, occlusions, and overlaps of targets 

are included. A total of 18 videos are gathered, with three reserved specifically for detailed analysis 

and the remaining 15 earmarked for splicing and use in model training. 

2.6 Dataset Construction 

In the second phase, the collected videos are processed to construct a robust dataset. This 

involves splicing the videos into individual frames, which are then annotated and augmented to 

prepare them for the training phase. The annotation process is facilitated by Roboflow, a platform 

designed to streamline the management and annotation of datasets for computer vision applications. 

Each image frame is carefully annotated to identify and label all visible military assets, employing 

techniques such as 'Label What You See' (LWYS) to ensure accuracy. The annotations include precise 

bounding box coordinates for each object of interest, reflecting the meticulous detail required for 

effective model training. Follow- ing annotation, the images undergo augmentation processes to 

enhance the dataset's robustness, including adjustments to resolution, grayscale modifications, 

contrast auto-adjustment, and randomized hue shifts. 

2.7 Model Training 

With a prepared dataset, the next stage involves training the YOLOv8 model using the 

Ultralytics framework within the Google Colab environment. This stage is critical as it in- volves 

setting up the computational environment, importing necessary libraries like numpy for numerical 

operations and cv2 for image processing, and configuring the training parameters detailed in the 

dataset configuration files. Training the model involves loading the pre-annotated and augmented 

images and employing advanced machine learning techniques to teach the model how to accurately 

detect and classify various objects within the frames. The model is trained over several iterations, 

adjusting parameters to optimize ac- curacy, reduce false positives, and increase the reliability of the 

system under various operational conditions.  
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2.8 Target Detection 

The final stage tests the trained model's effectiveness by applying it to new, unseen video inputs. 

This phase is crucial for evaluating the model's practical application in real-world scenarios. The 

model's performance is assessed based on its ability to accurately identify and classify military 

vehicles and infantry in video frames. This involves processing the video through the model, which 

detects targets and classifies them according to the learned characteristics. The results are then 

analyzed to determine the model's accuracy, speed, and reliability in detecting military assets, 

providing valuable in- sights into its potential deployment in military reconnaissance operations.  

3. Results 

3.1. Visualization of output 

 
Fig. 1 Visualization of Output 

Above is the output visualization of the bounding boxes. Moving from the top left corner of the 

screen, highlighted using the green box, is the frame index of the current image being shown in the 

video. The frame index indicates the specific sequence within the video sequence; in this case, the 

number '264' means that the image being shown is the 264th frame in the video. Moving to the bottom 

left of the display, highlighted by the blue box, is the priority target currently visible, which in this 

case is labeled as 'Priority Target: Tank.' On the right side of the screen, highlighted by the purple 

box, is a list showing all the objects currently being detected within the frame. The text displayed 

includes labels such as 'Tank (0.82)' and various instances of 'Infantry' with their respective 

confidence scores. 

3.2. Analysis and Interpretation of Sample Video 1 

In, sample video 1, it shows twelve (12) infantry and one (1) tank, throughout the 

approximately 13 seconds of the video, as the video has a frame rate of 13 seconds the ex- pected 

occurrence to have 304 instances of “Tank” and 3,648 instances of “Infantry”. 

 
Fig. 2. Number of tank detections per frame (with expected count) for video sample 1 
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Fig. 3. Number of infantry detections per frame (with expected count) for video sample 1 

Table 1. Non-NMS Result for Video Sample 1 

True Positive 2214 Precision 0.91791045 

False Positive 198 Recall 0.57342657 

False Negative 1647 F1 0.70588235 

Table 2. NMS Result for Video Sample 1 

True Positive 1906 Precision 0.97096281 

False Positive 57 Recall 0.49365449 

False Negative 1955 F1 0.65453297 

 

 
Fig. 4. Video sample 1 Non-NMS vs NMS Model Performance 

 

 
Fig. 5. Rolling average processing time of 5 frames for video sample 1 
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Fig. 5 shows the processing time taken for each frame in video 14, as the video is 24 frames per 

second which means that 42 milliseconds and it can be seen that it on average takes 

19.5 milliseconds which is less than the 42 milliseconds threshold and way below the 93 milliseconds 

for real time detection. A snippet of video 14 can be seen in figure 4.7. 

3.3. Analysis and Interpretation of video sample 2 

Video sample 2 shows a variety of conditions which can be segmented and summarized as 

shown in table 3. 

Table 3. Detection summary of video sample 2 

Frame index 
Detection 

Start End 

1 80 
2 “Tank” 

1 “IFV” 

81 212 1 “Tank” 

213 301 No 

detection 

302 353 
1 “Tank” 

1 “IFV” 

 

 
Fig. 6. Number of tank detections per frame (with expected count) for video sample 2 

 
Fig. 7. Number of IVF detections per frame (with expected count) for video sample 2 

 

Table 4. Non-NMS results for video sample 2 

true positive 333 Precision 0.98813056 

false positive 4 Recall 0.91483516 

false negative 31 F1 0.95007133 
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Table 5. NMS Results for Video Sample 2 

true positive 333 Precision 0.99107143 

false positive 3 Recall 0.91483516 

false negative 31 F1 0.95142857 

 

 
Fig. 8. Video sample 2 Non-NMS and NMS model Performance 

In the case of video 11, where it shows 3 vehicles with no obstruction or occlusion, the precision is 

high at 98.81% before NMS and 99.1% after NMS indicating that the model’s prediction is very accurate 

even without NMS. The recall values for both instances remain unchanged at 91.48% suggesting that 

the model is consistently identifying high proportion of true positives throughout the entire video. 

The same goes with the F1 score, showing no significant changes before and after NMS indicating that 

the model is providing accurate and reliable detections, and that NMS does not significantly change 

the performance of the model 

 
Fig. 9. Rolling average processing time of 5 frames for video sample 2 

Same as before, the model average processing time does not exceed 23 milliseconds and with a video 

with a frame rate of 24 frames per second, the threshold in that it can be done real time is 42 

milliseconds a video, still much higher than the actual detection rate. 

4. Discussion 

It can be seen that overall the model is very robust with accuracy and precision above 90% on 

both instances. some things to note are that firstly, precision increases after NMS implying that the 

model is becoming more precise and conservative meaning the model is making less false positive 

detections. However, the recall value drops after NMS which means the model is missing more 

positive instances. Some possible explanation for this is that the increase in precision after NMS post-

processing suggests that the model is successful in removing overlapping or redundant detections 

leading in a reduction of false positives, however the decrease in recall means that in the process of 

removing redundant bounding boxes, a lot of true positives are coincidentally re- moved. In the case 

of video sample 1 this is possibly due to the occlusion of objects with the same “case” as it shows 12 

Video 11 Non-NMS and NMS 

Model Performance 
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infantries crowded on a tank. Overall it can be seen that NMS post processing causes the model to be 

more conservative. 

5. Conclusions 

This research has demonstrated the capability of a machine vision system employing the 

YOLOv8 algorithm, augmented with custom weights, to enhance the detection of vehicles and 

infantry from footage captured by commercial-grade drones. The findings articulated in the previous 

section of this paper confirm that the precision of the developed model surpasses the baseline 

requirement of 78.21%, achieving a precision rate of 90% in all evaluated scenarios. For optimal 

detection, each object must maintain a minimum size of 83x83 pixels. More- over, the system's 

processing speed is sufficiently rapid for real-time applications, as evidenced by its ability to process 

images in under 23 milliseconds—quicker than the duration a single frame is displayed in a standard 

video at 24 frames per second. This efficiency supports the potential utility of the system in 

operational environments where timely data processing is critical. 
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