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Abstract: Modeling the phenomenon of a single droplet impacting a horizontal solid surface is 

carried out using the finite volume - front tracking method. This work aims to study the 

characteristics of droplets, especially the density field. The interface is tracked using the front-

tracking method based on the location of the density jump. The governing equations used in this 

modeling are the 2D continuity and Navier-stokes equations for the unsteady and incompressible 

cases. The validation of this research is done by comparing the results obtained using the implicit 

scheme with the results developed by Tryggvason 2012 using the explicit scheme. This research 

shows that surface tension plays an important role in the shape of the droplet when moving and 

impacting the surface. In addition, the grid size is known to have an influence on this modeling. The 

smaller the grid size (the more the number of grids), the more accurate the density jump obtained 

and closer to the exact results. This research is expected to provide a deeper understanding of 

microscopic phenomena, especially the droplet phenomenon. 
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1. Introduction 

Work on single droplets has great significance in understanding various physical and chemical 

phenomena that occur in liquid-based systems, such as internal combustion and liquid sprays. In 

combustion engines, fuel droplets perform an important role in determining the efficiency, emissions, 

and stability of the combustion process. Single-droplet modeling has become a useful tool for 

predicting evaporation and combustion behavior, thus supporting the development of more efficient 

system designs [1][2].  

In the applications of liquid spray, such as irrigation and medical nebulizers, droplet parameters 

such as size and velocity greatly affect efficiency and precision levels. A fluorescence-based technique 

was recently introduced to measure the temperature of droplets in sprays, which helps provide 

deeper insights into the heat and mass transfer process [3]. 

Single-droplet research has also played an important role in the development of advanced 

combustion systems, such as jet engines. Studies show that fuel atomization and its interaction with 

the surrounding air turbulence have a significant impact on the fuel vaporization and mixing process, 

which contributes to improved efficiency as well as reduced pollutant emissions[4]. In printing 
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technologies such as inkjet printing, precise control of droplet size and shape is a key success factor. 

Research related to atomization and droplet distribution has provided valuable insights to produce 

high quality prints[5],[6],[7].  

In modern liquid-based refrigeration systems, the interaction of liquid droplets with hot surfaces 

plays an important role in determining the effectiveness of heat transfer. The study of single droplets 

provides essential data regarding evaporation rates and phase transitions, which form the basis for 

the development of high-performance refrigeration systems[8]. 

Related research on the droplet phenomenon was conducted by [9] using the finite volume 

method and [10] using the finite difference method. Both studies were conducted with a front-

tracking scheme to track the movement of the interface between the two liquid phases and the 

surrounding fluid. It is obtained from previous studies that the value of density and gravitational 

force greatly affects the spreading ratio [11]. 

As a whole, single-droplet research provides an in-depth understanding of microscopic 

phenomena that directly affect system performance at the macroscopic scale. With the support of 

cutting-edge technologies such as high-resolution imaging and numerical simulation, these studies 

are increasingly relevant for fostering innovation in the fields of green energy and precision 

manufacturing [12]. 

2. Mathematical Modeling and Governing Equations   

Multiphase flow is a complex phenomenon involving at least two or more fluids. In this research, 

the interfacial diffusion approach involves two fluids, the droplet and the surrounding fluid where 

the dynamics and behavior of the interface changes are influenced by surface tension. In addition, 

other variables that also contribute significantly to the properties of a fluid are density, viscosity, and 

the influence of surface tension and contact angle [10], [13], [14]. The involvement of these variables 

is written in a governing equation to be able to describe the phenomena that occur in a case. The 

governing equation that describes the movement of both liquid and gaseous fluids is the Navier-

Stokes equation. In simplifying this concept, the equations used are the continuity and Navier-Stokes 

equations for incompressible and unsteady flow cases [9],[10]. 

2.1. Governing Equations 

In this present study, the governing equations used are the equations of continuity and Navier-

Stokes. The equations used for the case of incompressible unchanging flow and two-dimensional 

unsteady flow, so the governing equations are presented as follows, 

( )10=



+




+












y

v

x

u

t



 

( )2
2

2

2

21
f

x
g

y

u

x

u

x

p

y

u
v

x

u
u

t
++




+




+




=




+




+






















  

( )3
2

2

2

21
f

y
g

y

v

x

v

x

p

y

v
v

x

v
u

t
++




+




+




=




+




+























 

Where, u and v denote the velocity in the x and y axis directions, p denotes the pressure value, ρ 

is the density and ν is the viscosity value.  

2.2. Governing Equations 

Discretization of the governing equation is conducted implicitly with the fractional-step method. 

This method is one way the momentum equation becomes implicit by means of 2 discretization steps, 
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namely by partially deriving the x component first and then solving the derivative part of the y 

component with the Thomas algorithm[9], [10], [15]. 
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The governing equation can be solved by neglecting the pressure value first, using the fractional-step 

method. The following is the discretization of the governing equation for the droplet phenomenon. 

2.2.1. Discretization of x and y directions 

First order fractional-step formulation as follow, 
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Second order fractional-step formulation as follow, 
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Where (𝑢,̂ 𝑣̂) are auxiliary components and operators 𝐿𝑥 , 𝐿𝑥𝑥 , 𝐿𝑦 , 𝐿𝑦𝑦 is defined as below, 
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Where 𝜙 is general variable. To derive an efficient solution, the following linearization is required, 
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Then linearize the above is substituted in to equations 6-9. Thus obtained the value of 𝑢̂ and 𝑣̂ from 

the equation of finite volume as follow, 
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These equations form a tridiagonal system often referred to as the tridiagonal matrix algorithm (TDMA) 

with the general concept as follows, 
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Where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are the main coefficients of the diagonal matrix, 𝜙1and 𝜙2 are the variable of interest , 

𝑅𝐻𝑆1and 𝑅𝐻𝑆2 are the right-hand side coefficients whose values are already known. The form of the 

coefficients in equations (18) and (19) to be calculated using equation (20). The coefficient of equation 

(18) became as below, 
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For equation (19), the coefficient become as follow, 
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Next step is determining the value of transient velocity 𝑢∗ and 𝑣∗from equations (8) and (9) as follow, 
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2.2.2. Pressure Correction  
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2.3. Computational Domain and Boundary Conditions 

The computational domain is square box where the pressure control volume is placed inside the 

computational domain, so that the boundary of the pressure control volume at the edge of the domain 

coincides with the domain boundary. In the notation for a standard Staggered-grid Mesh, the pressure 

is assumed to be known at the center of the control volume outlined by a thick solid line. The horizontal 

velocity component (u) is torn off at the center of the left and right edges of this control volume and the 

vertical velocity component (v) is kept at the center of the top and bottom edges. 

 

 

 

 

 

 

 

 

Figure 1. Computational domain in staggered-grid notation 

To simplify the case, we must first determine the appropriate boundary conditions. As long as 

the center of the control volume coincides with the boundary conditions we can set the velocity in 

accordance with what it should be. For the rigid wall case, the normal velocity is usually zero and for 

the inflow boundary, the normal velocity is generally specified. The velocity equation at the boundary 

condition follows the following equation. 
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Where uwall is the tangent velocity at the wall and ui,1 is the shadow velocity. As long as the wall velocity 

and the velocity inside the domain ui,2 are known, we can easily find the shadow velocity. 
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2.3. Numerical Code (MATLAB) 

The implementation of the algorithm described above is written in the form of a script and run using 

MATLAB R2019 student version. The script is used to simulate the falling motion of a droplet that starts 

at the center of a square domain. As gravity accelerates the droplet's downward fall, the droplet 

becomes flatter and its outer part is pulled backward by the water flow. 

3. Results and Discussion 

This research is an advanced stage of what researchers have done in 2018. Referring to the article, 

it was found that the modeling developed by the researcher was consistent with that developed by 

Tryggvason (2012) [16]. The phenomenon of a single droplet hitting a solid surface is modeled in this 

study. The governing equations used in this modeling are the continuity equation, momentum 

equation for the case of unsteady flow and incompressible fluid and front-tracking equation to track 

the interface. The solution of the discretization of the governing equations in this study was carried 

out using the finite volume method implicit scheme. The focus of discussion in this study is to 
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determine the effect of variations in grid size and density ratio on the characteristics of the density 

field.  

 

 

 

 

 

 

 

 

 

Figure 2. Droplet impacting solid surface illustration 

A single droplet of liquid falling in the air vertically with a uniform velocity impacting a 

horizontal surface at room temperature is shown in Fig 2. The diameter of the droplet in free fall 

before impacting the surface is dd = 0.2 cm. The impact angle when the droplet impacts the surface is 

θ = 90o. Variations of modeling conditions are shown in table 1. Validation of the modeling results is 

done by comparing the velocity field displayed in 2D images to the modeling done by Tryggvason 

2012 with an explicit scheme. The density field is the focus of this study and is shown for each case 

in Table 1 below, 

Table 1. Variations of single droplet modeling. 
Cases Interface Surface Tension 

1 not tracked neglected 
2 tracked neglected 
3 tracked not neglected 

The three variations above are given the grid size, density ratio (𝜌𝑑/𝜌g) and time step (Δt) 

respectively: grid size by 32, density ratio by 2 and (Δt) by 0.00125 s. 

3.1. Validation of Single Droplet Modelling 

The validation of this research is done by comparing the modeling results with the numerical 

results developed by Tryggvason 2012. These two modelings have different schemes in discretizing 

the governing equations where an implicit scheme is performed in this modeling and Tryggvason 

developed modeling with an explicit scheme. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Terminal velocity (v/v*) as dimensionless function (tvo/do), a) case 1 and b) case 2 

The non-dimensional velocity change as a function of time t*(tvo/dd) is shown in Fig 3. The non-

dimensional velocity is represented by the terminal velocity (v/v*) where the actual velocity v is 

divided by the reference velocity (v*). The reference velocity is obtained from the equation 𝑣∗ = (𝜌𝑑 - 

𝜌o) g𝑑2⁄𝜇. The notation ρo represents the density value around the droplet (surrounding fluid). As can 
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be seen from Fig 3, the change in velocity as a function of time for the first and second cases in this 

study has the same value trend as that done by Tryggvason (2012) [16]. 

3.2 Characteristic of Density Field 

Density field is the distribution of density values indicated by a density jump between the two 

fluids. As long as there is no temperature influence in the computational process, the density value 

of the droplet must have a uniform value. The density field in this modeling can be seen in Figures 4 

and 5 below, 

 

t* Case 1 Case 2 

0 

 
 

12.5 

  
Figure 4. Initial and on-start density fields, case 1 and 2 

Modeling in the first case, the interface is not defined while for the second case the interface is 

defined by the front-tracking method. The density spike does not occur at t*=12.5 for the first case so 

that the phase in the computational domain is difficult to distinguish between the droplet and the 

surrounding fluid. This modeling produces results that do not match the actual phenomenon. As 

long as the interface separating the contacting fluids is not defined, the modeling results obtained do 

not match the physical phenomenon. In the second case, a spike in density value is marked by a 

marker point and the separation interface between the droplet and the surrounding fluid is 

reconstructed. The interface is tracked using the front-tracking method based on the location of the 

density jump. 

Figure 5 shows the density fields for the second and third cases. The interface for each case is 

tracked by front-tracking method with surface tension variation. In the second case surface tension 

is ignored in modeling the droplet phenomenon while for the third case the modeling involves 

surface tension in solving the governing equations. When t* at the position (0 - 12.5) of free falling 

droplet, there is no significant difference in the density field for each case. However, after the droplet 

hits the horizontal surface, there is a difference in the second and third cases. The condition of the 

density field. 

The condition of the density field before the droplet hits the surface occurs at t* = 25 and after 

hitting the surface occurs at t* = 32.5. As can be seen from Figure 5, the density field has an irregular 

shape before and after the droplet hits the surface. This is because the discretization solution of this 

case does not involve surface tension, so the shape of the droplet cannot be maintained when it hits 

a surface. 
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t* Case 2 Case 3 

0 

 

 

12.5 

 

 

25 

 

 

32.5 

 

 

Figure 5. Initial and on-start density fields, case 2 and 3 

In contrast to the modeling in the third case, when surface tension is taken into account in the 

completion of discretization, several phenomena occur when droplets hit the surface as shown in 

Figures 5 and 6. These phenomena are spreading, recoiling and bouncing up. When t* = 25 droplets 

hit the surface and the phenomenon of spreading occurs. The condition of the droplet after impacting 

is shown in Figure 5 at t∗ = 32.5. At this stage the phenomenon of bouncing up occurs. This spike in 

density value indicates a phase difference between the two fluids.  
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t* Case 2 Case 3 
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Figure 6. Velocity fields 2D visualization, case 2 and 3 
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The density jump portrait of the front-tracking method is affected by the grid size using a 2D 

view. Figure 7 shows the density jump portraits in this study, (a) the density field with the expected 

density jump, (b) grid size 162, (c) grid size 322 and (d) grid size 642. The 642 resolution grid displays 

a steeper density jump and is closer to the exact solution condition (a) than the 162 and 322 grid sizes. 

The smaller the grid size (the greater the number of grids), the more accurate the results but the more 

complicated and time-consuming the calculation.  

 

 

 

 

 

Figure 7. Density jumps, exact solution, grid size 162, 322, 642. 

4. Conclusions 

Modeling of droplets impacting and spreading on a horizontal surface is performed using the 

finite volume method - front tracking with an implicit scheme. To validate this modeling is conducted 

by comparing with the model that has been developed by Tryygvason 2012 [16] using the finite 

volume method - front tracking explicit scheme. Changes in non-dimensional velocity as a function 

of time t*(tvo/dd) and non-dimensional velocity represented by terminal velocity (v/v*) are plotted so 

that this modeling is found to be in accordance with the model developed by Tryggvason 2012. In 

this study, the variables used are the case variation using interface tracking and surface tension with 

constant density ratio. The density field characteristic of the multi-phase phenomenon is shown by 

the density jump. The interface is tracked using the front-tracking method based on the location of 

the density jump. Surface tension influences the shape of the droplet before and after hitting the 

surface, resulting in spreading, recoiling and bouncing up phenomena. In addition, the grid size is 

known to have an influence on this modeling. The smaller the grid size (the greater the number of 

grids), the more accurate the density jump obtained and the closer to the actual result. 
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