Magnesium and its alloys as Biomaterial for bone repair: advances, challenges and future direction in mechanical and tissue engineering research
DOI:
https://doi.org/10.47355/jaset.v5i1.77Keywords:
magnesium, porous metals, bone tissue, biocompatibility, vascularizationAbstract
Interest in the application of biodegradable bone screw is driven by the increasing knowledge on biomedical materials and tissue engineering field. Currently, various polymeric- as well as metallic-based materials have been used as degradable bone screw. Biodegradable material is a desirable feature for bone screw since the goal is that it uses as a temporary structure holding a growing bone tissues until the bone fracture has sufficiently healed. Among others, magnesium and its alloys have a potential chance to serve as biodegradable bone screw applications, as it has mechanical properties similar to natural bone, lightweight, and biocompatible approved. This article aims to report current development and future potential use of magnesium-based metal for bone screw application. Techniques on manufacturing process, mechanical performance, and biocompatibility assessment of magnesium and its alloys are highlighted.
References
Burr, D.B. & Martin, R.B. (1989). Errors in bone remodeling: toward a unified theory of metabolic bone disease. American Journal of Anatomy, Vol. 186, 186-216.
Choi, K., Kuhn, J.L., Ciarelli, M.J., and Goldstein, S.A. (1990). The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. Journal of Biomechanics, Vol. 23, 1103–1113.
Buckwalter, J.A et al.. Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect;1996:45:387–99.
Rho J-Y, Liisa K-S, Zioupos P. 1998. Medical Engineering & Physics 20: 92–102
Weiner, S., Wagner, H.D. 1998. Annual Review of Materials Research 28: 271-98
Lidgren, L. The Bone and Joint Decade-2000-2010. Bulletin of the World Health
Organization. 2003: 81( 9): 629-697.
Seiberling, I. Osteoporosis a silent killer. The Leader-Post. November 2007.
Kelly, B.E. 2000. Orthopedic Technology Review 2: 28-34
Zhou, J. and Lu, L. (2011). Biomimetic Structured Porogen Freeform Fabrication System for Tissue Engineering, On Biomimetics, Dr. Lilyana Pramatarova (Ed.), ISBN: 978-953-307-271-5, InTech.
Bauer, T. W., & Muschler, G. F. (2000). Bone graft materials: An overview of the basic science. Clinical Orthopaedics and Related Research, 371, 10–27
Laurencin, C.T., and Ambrosio, A.M.A. 1999. Annual Review of Biomedical Engineering 1: 19-46
Arrington, ED.; Smith, WJ.; Chambers, HG.; Bucknell, AL. & Davino, NA. (1996).
Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res, 329, 300-309, 0009-921X.
Silber, J., Anderson, D., Daffner, S. 2003. Spine 28: 134-9.
Goldberg, M. & Stevenson, S. (1987). Natural history of autografts and allografts. Clin Orthop Relat Res, 225., 7-16, 0009-921X.
Damien, J. & Parsons, R. (1991). Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater, 2., 187-208, 1045-486.
Gadzag, A.R., Lane, J.M., Glaster, D., Forster, R.A. 1995. Journal of the American Academy of Orthopaedic Surgeons 3: 1-8.
Zdeblick, T., and Ducker, T.B. The use of freeze-dried allograft bone for anterior cervical fusions. Spine 1991;16:726–9.
An, H.S., Simpson, J.M., Glover, J.M., Stephany, J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 1995;15: 2211–6.
Bohlman, H., Emery, S., Goodfellow, D., Jones, P. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. J Bone Joint Surg [Am] 1993;75:1298 307.
Giannoudis, PV.; Dinopoulos, H. & Tsiridis E. (2005). Bone substitutes: An update. Injury, 36., 20-27, 0020-1383.
Langer, R., and Vacanti, J. 1993. Science 260: 920-6.
Robertson, D.M. ; Pierre, L. & Chahal, R. (1976). Preliminary observations of bone ingrowth into porous materials. Journal of Biomedical Materials Research, Vol. 10, 335–344.
Cameron, H.U. ; Macnab, I. & Pilliar, R.M. (1978). A porous metal system for joint replacement surgery, The International Journal of Artificial Organs, Vol. 1, 104–109
Ryan, G. ; Pandit, A. & Apatsidis, D.P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, Vol. 27, 2651-2670.
Mistry, A., and Mikos, A. 2005. Advances in Biochemical Engineering/Biotechnology 94: 1-22
Tomonori, M. 2010. Design of Injectable Bone Tissue Engineering Scaffold Consists of ß-Tricalcium Phosphate Beads and Alginate, Tissue Engineering, Daniel Eberli (Ed.), ISBN: 978-953-307-079-7, InTech.
Thomson, R., Mikos, A., Beahm, E., Lemon, J.C., Satterfield, W., Aufdemorte, T., Miller, M. 1999. Biomaterials 20: 2007-18.
De Groot, K. 1984. In Biocompatibility of clinical implant materials, ed. W DF, pp. 199-222: Boca Raton, FL: CRC Press
Ohgushi, H., Miyake, J., Tateishi, T. 2003. Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton.: Novartis Foundation. 118-27.
Tsuchida, H.; Hashimoto, J.; Crawford, E.; Manske, P. & Lou, J. (2003). Engineered
allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop
Res, 21: 44-53, 0736-0266.
Shang, Q.; Wang, Z.; Liu, W.; Shi, Y.; Cui, L. & Cao Y. (2001). Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg, 12: 586-593, 1049-2275.
Wang, L.; Shelton, RM.; Cooper, PR.; Lawson, M.; Triffitt, JT. & Barralet JE. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24: 3475-3481, 0142-9612.
Perka, C.; Arnold, U.; Spitzer, RS. & Lindenhayn, K. (2001). The use of fibrin beads for tissue engineering and subsequential transplantation. Tissue Eng, 7: 359-361, 1076-3279.
Dimitriou, R., Jones, E., McGonagle, D., Giannoudis, P.V. Bone regeneration: current concepts and future directions. BMC Medicine. 2011;9:66.
Breme, H.J. & Helsen, J.A. (1998b). Selection of Materials, In: Metals as Biomaterials, Breme, H.J. and Helsen, J.A., (Ed.), 1-35, John Wiley & Sons, Chichester.
Thieme, M. ; Wieters, K.P. ; Bergner, F. ; Scharnweber, D. ; Worch, H. ; Ndop, J., et al. (2001).Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. Journal of Materials Science: Materials in Medicine, Vol. 12, 225±231.
Thelen, S., Barthelat, F., & Brinson, L.C. (2004). Mechanics Considerations for Microporous Titanium as an orthopedic implant material. Journal of Biomedical Materials Research, Vol. 69A, 601-610.
Sumner, D.R.; Turner, T.M.; Igloria, R.; Urban, R.M.; Galante, J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998, 31, 909-917.
Alvarado, J., et al., Biomechanics of Hip and Knee Prostheses. In Applications of Engineering Mechanics in Medicine (Graduate Engineering Design, University of Puerto Rico at Mayagüez, 2003.
Geetha, M., et al., Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in Materials Science, 2008.
Freyman TM, Yannas IV, Gibson LJ. 2001. Progress in Materials Science 46: 273-82
LeGeros RZ, Parsons JR, Decals G, Driessen F, Lee D, et al. 1988. Annals of the New York Academy of Sciences 523: 268-71
Freyman, T.M.; Yannas, I.V.; Gibson, L.J. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci. 2001, 46, 273-282.
Boyan, B.D.; Hummert, T.W.; Dean, D.D.; Schwartz, Z. Role of materials surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17, 137-146.
Fujibayashi, S., Neo, M., Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25(3):443–450.
Navarro, M., et al., Biomaterials in orthopaedics. Journal of The Royal Society Interface, 2008. 5(27): p.1137-1158.
Olszta, M.J. et al. (2007) Bone structure and formation: A new perspective. Mater. Sci. Eng. R: Rep. 58, 77–116.
Jones, J.R. & Hench, L.L., Biomedical materials for new millennium: Perspective on the future. Materials Science and Technology, 2001. 17(8): p. 891-900.
Gross, K.A. & Rodriguez-Lorenzo, L.M.L.M., Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomateria1s, 2004. 25(20): p. 4955-4962.
Atwood, R.C., et al., Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography. Scripta Materialia, 2004. 51(11): p. 1029-1033.
Long, M., and Rack, H.J. Biomaterials 1998;19:1621–39.
Niinomi, M.. Mater Sci Eng A 1998;243:231–6.,
Wen, C.E, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. J Mater Sci: Mater Med 2002;13:397–401.
Lee, J.H., Kim, H. E., Shin, K. H., Koh, Y.H. J Mater Letter 64 (2010) 2526-2529.
Bermudez, M.D., Carrion FJ, Martinez-Nicolas G, Lopez R. Erosion–corrosion of stainless steels, titanium, tantalum and zirconium. Wear 2005;258:693–700.
Kato, H., Nakamura, T., Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T, Kim H, Kokubo T. Bonding of alkali- and heat-treated tantalum implants to bone. J Biomed Mater Res 2000;53:28–35. [PubMed: 10634949].
Bobyn, J.D., Stackpool G.J., Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 1999;81 B:907– 914. [PubMed: 10530861].
Hacking, S.A., Bobyn JD, Toh K, Tanzer M, Krygier JJ. Fibrous tissue ingrowth and attachment to porous tantalum. J Biomed Mater Res 2000;52:631–638. [PubMed: 11033545].
Bobyn, J.D., Toh, K.K, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplasty 1999;14:347–354. [PubMed: 10220190].
Matsuno, H., Yokoyama A, Watari F, Motohiro U, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001;22:1253–1262. [PubMed: 11336297].
Miyazaki, T., Kim, H.M., Kokubo, T., Ohtsuki C, Kato H, Nakamura T. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials 2002;23:827–832. [PubMed: 11771702].
Kokubo, T., Kim, H.M., Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003;24:2161–2175. [PubMed: 12699652].
Okuma, T., Magnesium and bone strength. Nutrition, 2001.17: p. 679-680.
Wolf, F.1. & Cittadini, A., Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 2003.24: p. 3-9.
Hartwig, A., Role of magnesium in genomic stability. Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis, 2001. 475: p.113-121.
Maly, E., Carcinogenesis from the standpoint of view of molecular geometry and synergism: Relevance of oxygen and magnesium. Medical Hypotheses, 1983. 11: p. 177-184.
Saris, N.-E.L., et aI., Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 2000. 294: p. 1-26.
Vormann, J., Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003. 24: p. 27-37.
Stroganov, G.B., et aI., Magnesium-base alloys for use in bone surgery. 1972, Patent: 3687135: US.
Witte, F., et a1., Characterization of degradable magnesium alloys as orthopaedic implant material by synchrotron-radiation-based microtomography. Access (8 Sep. 2004).
Seelig, M.G., A study of magnesium wire as an absorbable sature and ligature materila. Archives of Surgery, 1924. 8: p. 669-680.
Troitskii. V.V. & Tsitrin, D.N., The resorbing metallic alloy 'Osteosinthezit' as material for fastening broken bone. Khirurgiia, 1944. S: p. 41-44.
Takaya, M., Hashimoto, K., & Toda, Y., Application of magnesium to biomaterials for hard-tissue. Journal of Japan Institute of Light Metals, 2000. 50(7): p. 343-347.
Shaw, B. A. ASM Handbook Volume 13A: Corrosion: Fundamentals, Testing and Protection, Edited by D. Stephen, ASM International, Materials Park, Ohio, USA, 2003.
Dee, K.C., Puleo, D.A, & Bizios, R., Tissue-biomaterials interactions. 2002, United States of America: John Wiley & Sons, Inc.
Gu, X.N., Zhou, W.R., Zheng, Y.F., Liu, Y.X., Li Y. (2010), Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Materials Letters 64 (2010) 1871–1874.
Komer, C., et al., Endogenous particle stabilization during magnesium integral foam production. Advanced Engineering Materials, 2004. 6(6); p. 385-390.
Goshima, J., Goldberg, V.M, Caplan, A.I. The Origin of Bone Formed in Composite Grafts of Porous Calcium-Phosphate Ceramic Loaded with Marrow-Cells. Clin Orthop Related Res 1991; 269: 274-83.
Hausman, M.R, Schaffler, M.B, Majeska, R.J. Fracture healing impairment in rats by an angiogenesis inhibitor indicates a requirement for vasculature in early fracture callus development. J Bone Miner Res 2001; 16: S181-S.
Yamada, Y., et aI., Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 glcm3• Journal of Materials Science Letters, 1999.18: p. 1477-1480.
Wen, C.E., et aI., Processing of biocompatible porous Ti and mg. Scripta Materialia, 2001. 45(10): p. 1147-1153.
Wen, C.E., et al., Porous biodegradable magnesium as bone substitute. Materials Science Forum, 2003. 419-422: p. 1001-1006.
Fielding, G.A. et al. (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 28, 113–122.
Kirkland, N.T., Kolbeinsson, I., Woodfield, T., Dias, G.J., Staiger, M.P. (2011), Synthesis and properties of topologically ordered porous magnesium, Mater. Sci. Eng. B (2011), doi:10.1016/j.mseb.2011.04.006.
Nguyen, T.L., Staiger, M.P., Dias, G.J., and Timothy, B. F. Woodfield (2011), A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Advanced Engineering Materials 2011, 13, No.9.
Carmeliet, P., and Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000: 407: 249–257.
Yang, Q., Wei, S., Zhou, C., Huang, W., Lu, H., & Xie, Y. (2009). Recent development on porous calcium phosphate ceramics for biomedical application. Journal of Porous Materials, 16(2), 255–259.
El‑Kenawi, A.E, El‑Remessy, A.B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170(4):712–729.
Deleu, J., and Trueta, J. (1965) Vascularisation of bone grafts in the anterior chamber of the eye. J Bone Joint Surg Br, 47:319–329.
Ratner, B.D. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 2002 ; 78(1-3): 211-8.
Dziubla, T.D., Torjman, M.C., Joseph, J.I, Murphy-Tatum, M., Lowman, A.M. Evaluation of porous networks of poly(2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials 2001; 22(21): 2893-9.
Mooney, D.J., Organ, G., Vacanti, J.P., Langer, R. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant 1994; 3(2): 203-10.
Sieminski, A. L., Gooch, K.J., Biomaterials 2000, 21, 2232.
Muschler, G. F., Nakamoto, C., Griffith, L. G., Bone Joint Surg. Am. 2004, 86-A, 1541.
Jabbarzadeh, E., Abrams, C.F. Strategies to enhance capillary formation inside biomaterials: a computational study. Tissue Eng 2007 ; 13(8): 2073
Shepherd, B. R., Enis, D.R., Wang, F.Y., Suarez Y, Pober JS, Schechner JS. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 2006; 20(10): 1739.
Vacanti, C.A, Upton, J. Tissue-Engineered Morphogenesis of Cartilage and Bone by Means of Cell Transplantation Using Synthetic Biodegradable Polymer Matrices. Clin Plastic Surg1994 ; 21(3): 445-62.
Martins, A. M., Santos, M. I., Azevedo, H. S., Malafaya, P. B., Reis, R. L. Acta Biomater. 2008.
Gomes, M. E., Holtorf, H. L., R. L. Reis, A. G. Mikos, Tissue Eng. 2006, 12, 801.
Karageorgiou, V. and Kaplan, D. Biomaterials 2005, 26, 5474.
Marina I. Santos, Rui L. Reis, Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges, Macromol. Biosci. 2010, 10, 12–27
Street, J. et., al. Proc. Natl. Acad. Sci. USA 2002, 99, 9656.
Dai, J., Rabie, A. B. M. J. Dent. Res. 2007, 86, 937.
Loughman, M.S., Chatzistefanou K, Gonzalez EM, et al. Experimental corneal neovascularisation using sucralfate and basic fibroblast growth factor. Aust N Z J Ophthalmol 1996; 24(3): 289- 95.
Nguyen, M., Shing, Y., Folkman, J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 1994; 47(1): 31-40.
Shing, Y., Folkman, J., Haudenschild, C., Lund D, Crum R, Klagsbrun M. Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor. J Cell Biochem 1985; 29(4): 275-87.
Sato, Y., and Rifkin, D.B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 1988; 107(3): 1199-205.
Perets, A., Baruch, Y., Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res Part A 2003; 65A(4): 489-97.
Leach, J.K, Kaigler, D., Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006; 27(17): 3249-55.
Richardson, T.P, Peters, M.C, Ennett, A.B, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001; 19(11): 1029-34.
Borenstein, J.T., Terai, H., King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication technology for vascularised tissue engineering. Biomed Microdevice 2002; 4(3): 167-75.
Du, Y.A, Ghodousi, M., Qi, H., Haas, N., Xiao, W.Q., Khademhosseini A. Sequential Assembly of Cell-Laden Hydrogel Constructs to Engineer Vascular-Like Microchannels. Biotech Bioeng 2011; 108(7): 1693-703.
Tan, W., Desai, T.A. Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomater Engl 2004; 25(7-8): 1356-64.
Raghavan, S., Nelson CM, Baranski JD, Lim E, Chen CS. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 2010; 16(7): 2255-63.
Mironov, V., Markwald R, Forgacs G. Organ printing: selfassembling cell aggregates as "Bioink". Sci Med 2003; 9: 69-71.
Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in Biotechnology, 26(8), 434–441. https://doi.org/10.1016/j.tibtech.2008.04.009
Ding, D. C., & Shyu, W. C. (2022). Epigenetic regulation in tissue engineering and regenerative medicine. Journal of Biomedical Science, 29, 37. https://doi.org/10.1186/s12929-022-00830-y
Gu, X. N., & Zheng, Y. F. (2010). A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 4, 111–115. https://doi.org/10.1007/s11706-010-0097-2
Li, Y., Jahr, H., Yang, Y., & Grogan, S. P. (2021). Porous magnesium-based scaffolds for orthopedic and maxillofacial applications: A review. Biomaterials Science, 9, 7253–7271. https://doi.org/10.1039/d1bm01092a.
Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in Biotechnology, 26(8), 434–441. https://doi.org/10.1016/j.tibtech.2008.04.009
Ding, D. C., & Shyu, W. C. (2022). Epigenetic regulation in tissue engineering and regenerative medicine. Journal of Biomedical Science, 29, 37. https://doi.org/10.1186/s12929-022-00830-y
Gu, X. N., & Zheng, Y. F. (2010). A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 4, 111–115. https://doi.org/10.1007/s11706-010-0097-2
Li, Y., Jahr, H., Yang, Y., & Grogan, S. P. (2021). Porous magnesium-based scaffolds for orthopedic and maxillofacial applications: A review. Biomaterials Science, 9, 7253–7271. https://doi.org/10.1039/d1bm01092a.